報告人:熊革 教授
報告題目:The optimal quadratic estimate for the cone-volume measure of antipodal points and its applications.
報告時間:2025年10月25日(周六)8:30-9:20
報告地點:云龍校區6號樓304會議室
主辦單位:數學與統計學院、數學研究院、科學技術研究院
報告人簡介:
熊革,同濟大學長聘教授。主要研究凸幾何、積分幾何。在凸體幾何領域解決Lutwak-Yang-Zhang猜想空間維數n=2, 3 的情形,建立Orlicz-John橢球理論,完全解決了R^3中體積分解泛函的極值問題。相關成果發表于 Advances in Mathematics、Journal of Differential Geometry、Calculus of Variations and PDEs、Communications in Analysis and Geometry等期刊。
報告摘要:
The optimal quadratic estimate for the cone-volume measure of antipodal points of convex bodies in R^n is obtained. As effective applications of this estimate, we establish the strong Minkowski and Brunn-Minkowski inequalities in R^n. This talk is based on the joint work with Yu-De LIU and Kai-Wen Yang.