報(bào)告人:張會(huì)林 研究員
報(bào)告題目:Rough Stochastic Filtering
報(bào)告時(shí)間:2025年11月15日(周六)上午9:00
報(bào)告地點(diǎn):云龍校區(qū)6號(hào)樓304會(huì)議室
主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報(bào)告人簡(jiǎn)介:
張會(huì)林,山東大學(xué)數(shù)學(xué)與交叉科學(xué)研究中心研究員,博士畢業(yè)于山東大學(xué),曾在復(fù)旦大學(xué)、奧地利約翰開(kāi)普勒林茨大學(xué)從事博士后工作,后赴柏林工業(yè)大學(xué),洪堡大學(xué),巴黎七大等高校訪問(wèn)交流。主要從事隨機(jī)分析,粗軌道理論及其應(yīng)用等方面的研究。
報(bào)告摘要:
The theory of rough stochastic differential equations is applied to revisit classical problems in stochastic filtering. We provide rough counterparts to the Kallianpur--Striebel formula and the Zakai and Kushner--Stratonovich equations, seen to coincide with classical objects upon randomization. We follow Crisan--Pardoux in doing so in a correlated diffusion setting. Well-posedness of the (rough) filtering equation is seen to hold under dimension-independent regularity assumption, in contrast to the stochastic case.