報告人:張讓讓 副教授
報告題目:Wong-Zakai approximation and support theorem for quasilinear parabolic stochastic partial differential equations
報告時間:2025年11月23日(周日)上午9:00
報告地點:云龍校區(qū)6號樓304會議室
主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報告人簡介:
張讓讓,北京理工大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院副教授。博士畢業(yè)于中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院,研究領(lǐng)域為隨機偏微分方程。在《Communications in Mathematical Physics》、《The Annals of Applied Probability》、《Journal of Differential Equations》、《Electronic Journal of Probability》等期刊發(fā)表論文二十余篇,主持國家自然科學(xué)基金面上項目、青年基金項目和北京市自然科學(xué)基金面上項目等。
報告摘要:
In this talk, we are concerned with Wong-Zakai approximation and support theorem for quasilinear parabolic stochastic partial differential equations. Since this class of equations is not locally monotone, we implement a regularization strategy using a sequence of heat kernel to modify the matrix-valued diffusion term, thereby recovering the monotonicity. As a result, the problem is reduced to prove two results of further layer approximations. To this end, we further employ a kinetic formulation of the approximating solutions in the L^1 setting and fully use the doubling variables techniques. This is based on a joint work with Tusheng Zhang.