報告人:汪祥 教授
報告題目:A Bayesian Deep Prior-Based Quaternion Matrix Completion for Color Image Inpainting
報告時間:2025年12月6日(周六)下午3:00
報告地點:云龍校區6號樓304會議室
主辦單位:數學與統計學院、數學研究院、科學技術研究院
報告人簡介:
汪祥,博士、教授、博士生導師,現任南昌大學數學與計算機學院副院長,南昌大學數學一級學科博士學位點和博士后科研流動站負責人。獲批多個省級人才稱號,擔任中國計算數學分會理事,中國高等教育學會教育數學專委會常務理事, 國家天元數學東南中心江西基地執行主任,國際知名期刊《Computational and Applied Mathematics》的副主編。主要從事數值代數、人工智能與數據科學等領域的研究,在大規模稀疏特征值問題、線性和非線性矩陣方程的數值求解、譜聚類等方面取得了一些成果。目前主持(含完成)國家自然科學基金4項及省部級項目十幾項。近幾年以第一作者或通訊作者在ACM、JSC、CCP、NLAA等權威期刊上共發表SCI收錄論文80多篇。以第一完成人身份獲江西省自然科學獎1項和江西省教學成果獎3項。
報告摘要:
Color image inpainting plays an important role in computer vision, which aims to reconstruct missing regions from the available information. Existing quaternion-based deep inpainting methods often struggle to restore both global structure and natural textures, especially when only a single corrupted image is available for training. To address these challenges, we propose BQAE-TV, a novel model that integrates a quaternion fully connected network to capture global features while incorporating total variation regularization to optimize quaternion matrix completion, producing structurally coherent and visually natural images. Furthermore, a Bayesian inference mechanism is employed to regularize the deep image prior and mitigate overfitting. Experiments demonstrate that BQAE-TV outperforms both traditional and state-of the-art methods in terms of visual quality and quantitative metrics, validating its effectiveness and robustness.