報(bào) 告 人:牛強(qiáng) 教授
報(bào)告題目:Confluent Vandermonde with Arnoldi
報(bào)告時(shí)間:2023年06月13日(周二)下午16:30—17:30
報(bào)告地點(diǎn):靜遠(yuǎn)樓204學(xué)術(shù)報(bào)告廳
報(bào)告人簡(jiǎn)介:
牛強(qiáng),西交利物浦大學(xué)數(shù)學(xué)系教授,主要研究方向是數(shù)值代數(shù)、科學(xué)計(jì)算。2003年至2008年在廈門大學(xué)碩博連讀并獲博士學(xué)位, 期間,2007-2008年作為聯(lián)合培養(yǎng)博士研究生在法國(guó)信息與自動(dòng)化研究所(INRIA)研究學(xué)習(xí)高性能計(jì)算。 2009-2010年在在香港浸會(huì)大學(xué)聯(lián)合國(guó)際學(xué)院從事博士后研究。 主持和參加多項(xiàng)國(guó)家自然科學(xué)基金研究項(xiàng)目。在國(guó)際知名學(xué)術(shù)期刊如Numerische Mathematik, Journal of Computational Physics, BIT, Applied Numerical Mathematics等發(fā)表論文30余篇。
報(bào)告摘要:
In this work, we extend the Vandermonde with Arnoldi method recently advocated by P. D. Brubeck, Y. Nakatsukasa and L. N. Trefethen [SIAM Review, 63 (2021) 405-415] to dealing with the confluent Vandermonde matrix. To apply the Arnoldi process, it is critical to find a Krylov subspace which generates the column space of the confluent Vandermonde matrix. A theorem is established for such Krylov subspaces for any order derivatives. This enables us to compute the derivatives of high degree polynomials to high precision. It also makes many applications involving derivatives possible, as illustrated by numerical examples.