<sub id="ob5gl"></sub>
      <em id="ob5gl"></em>
    1. <style id="ob5gl"></style>

        <sub id="ob5gl"></sub>
        老熟女AV,亚洲精中文字幕二区三区,久久天天躁狠狠躁夜夜不卡,欧美人与动交视频在线观看,国产三级精品三级在线区,日韩国产成人精品视频,国产精品成人一区二区三区,无码人妻出轨黑人中文字幕

        10月14日 劉衛東教授學術報告(數學與統計學院)

        來源:數學行政作者:時間:2023-10-12瀏覽:265設置

        報 告 人:劉衛東 教授

        報告題目:Online Estimation and Inference for Robust Policy Evaluation in Reinforcement Learning

        報告時間:2023年10月14日(周六上午10:10 )

        報告地點:江蘇師范大學數學與統計學院學術報告廳(靜遠樓1506室)

        主辦單位:數學研究院、數學與統計學院、科學技術研究院

        報告人簡介:

               劉衛東,上海交通大學特聘教授,國家杰出青年科學基金獲得者,中國工業與應用數學學會理事。主要研究方向為統計學和機器學習等,目前已在AOS、 JASA、JRSSB、Biometrika、JMLR、ICML、IJCAI、IEEE TSP等專業頂尖期刊/會議上發表論文六十余篇。主持國家重點研發計劃課題1項,國家杰出青年科學基金1項,國家優秀青年科學基金1項。

        報告摘要: 

               Recently, reinforcement learning has gained prominence in modern statistics, with policy evaluation being a key component. Unlike traditional machine learning literature on this topic, our work places emphasis on statistical inference for the parameter estimates computed using reinforcement learning algorithms. While most existing analyses assume random rewards to follow standard distributions, limiting their applicability, we embrace the concept of robust statistics in reinforcement learning by simultaneously addressing issues of outlier contamination and heavy-tailed rewards within a unified framework. In this paper, we develop an online robust policy evaluation procedure, and establish the limiting distribution of our estimator, based on its Bahadur representation. Furthermore, we develop a fully-online procedure to efficiently conduct statistical inference based on the asymptotic distribution. This paper bridges the gap between robust statistics and statistical inference in reinforcement learning, offering a more versatile and reliable approach to policy evaluation. Finally, we validate the efficacy of our algorithm through numerical experiments conducted in real-world reinforcement learning experiments.



        返回原圖
        /

        主站蜘蛛池模板: 99精品国产综合久久久久五月天| 亚洲国产精品黄在线观看| japanese丰满奶水| 国产精品人妻中文字幕| 亚洲国产大胸一区二区三区| 999精品全免费观看视频| 日韩乱码人妻无码中文字幕视频| 国产肥妇一区二区熟女精品| 亚洲欧洲精品日韩av| 国产精品国三级国产专区| 国产成人AV国语在线观看| 精品一区二区亚洲国产| 开心五月婷婷综合网站| chinese性内射高清国产| 久久天天躁狠狠躁夜夜2020老熟妇| 精品无码成人片一区二区| 99国内精品久久久久久久| julia无码中文字幕一区| 乱码午夜-极品国产内射| 亚洲午夜久久久久久噜噜噜 | 亚洲av无码专区在线厂| 国产精品白丝久久av网站| 午夜通通国产精品福利| 国产精品视频亚洲二区| 国产视色精品亚洲一区二区| 精品无码专区久久久水蜜桃| 色噜噜一区二区三区| 亚洲欧美日韩精品久久亚洲区色播| 国产人妻精品午夜福利免费| 国产精品自在线拍国产手机版| 国内精品无码一区二区三区| 久久精品国内一区二区三区| 久久精品国产久精国产| 人人妻人人狠人人爽| 毛片无遮挡高清免费| 国产无遮挡裸体免费久久| 人妻系列无码专区69影院| 亚洲人妻精品中文字幕| 亚洲AV成人片不卡无码| 旺苍县| 色婷婷欧美在线播放内射|